Propeller Drag Under Sail Test

Propellers are a sailboat subject which sometimes turns into extremely heated exchanges when sailors gather and discuss propeller drag under sail. There are two schools of thought, of course. One school says that for best performance, propellers should be locked in reverse when sails are raised, and the engine(s) stopped. The other school of thought says that our transmissions should be put in neutral, and the propeller(s) allowed to free wheel while sailing with the engine off. 

This is of particular concern for us cruising catamaran owners as we have two propellers in the water and double the drag. We all know that underwater drag under sail is drag we can do without. So, which school of thought is correct? Hint …you don’t have Helicopter rotors on a boat.

I have never seen so much misinformation on a sailing subject tossed around the sailing forums as there is on propeller drag. I recommend you read this page carefully,  as there’s no hidden agenda here. This page exists because it’s important for all of us to get this right.

First, a note on Marine Diesel Engine transmissions

Concerning Yanmar diesels, there’s solid information from Yanmar on this subject. In Yanmar Advisory Number: MSA08-003 Dated: February 8, 2008 and sent to all Marine Distributors, they state that Yanmar requires their transmission be kept in neutral while sailing. In fact, they warn of internal damage to the gear or sail-drive which will result if the Yanmar transmission is locked while sailing, and that this damage will not be covered by Yanmar’s Limited Warranty. This advisory points to another which states the identical policy for sail drive units. This is an advisory which pretty much ends the debate on whether or not to free wheel propellers while under sail with Yanmar diesels installed… don’t you think?

Read the Yanmar Advisory But wait there’s more. Volvo has also addressed where their transmission should be when sailing. They also say the transmission should be put in neutral during sailing. If you ignore this, you’ll be buying new transmissions regularly.

Read the Volvo instruction manual (page 21) Volvo and Yanmar diesel engines probably represent 90% of diesel engines found in sailboats. So, for 90% of the sailing community the issue of where your gear shift lever should be when sailing has already been decided. If people don’t have one of these engines, they should look to their owner’s manual on their transmissions, but engine manufacturers like Yanmar and Volvo actually require their transmissions to be put into neutral under sail or the engine warranties are invalid.

Unless your transmission specifically says to shift into reverse while sailing, all sailboat owners should be free wheeling their propellers while sailing. 

Now …. we know where the transmission should be set when sailing … but … RC of , better known as “Maine Sail” decided to find out if locking the transmission hurt his sailing performance by increasing underwater drag, or if freewheeling the propeller reduced drag and was actually faster. This test has put an end to the bickering and has done what I feel is the definitive work on this subject. He has graciously allowed me to reproduce his work on this page.

This is the first comparison I’ve read between free wheeling propellers and fixed propellers that has an accompanying video verifying each phase of the testing procedure, as well as photos illustrating the jig constructed for the test. Also, it should be mentioned that this test was done in a harbor, not a test tank and the results are both conclusive and inescapable. Scroll down the page a bit to view the video of the actual propeller test. 

Now, on to his test…

Maine Sail’s Propeller Drag Test (with his permission!!)

Over last winter there were a few discussion on sailing forums that although entertaining, lead to no hard conclusions on whether a fixed prop or a locked prop causes more drag while under sail. There have been two studies that have both concluded that a freewheeling prop causes less drag but these studies were done in test tanks and some sailors argued that vortexes created within the tanks throw off the results.

I don’t like not knowing.

I spent a few late nights in the barn, over the winter, listening to good tunes and plugging away on a way to test the theories and came up with a test rig. This jig told me what I needed to know. It was designed to be affixed off the side of my dinghy and dragged through the water ahead of the motor, to avoid vortexes & whirligigs and what ever else, and at a depth similar to that of my own sailboats fixed prop.

Propeller Drag test

Video of the actual test

I obtained drag test results with both a locked propeller and a freewheeling propeller as well as measuring the drag of the jig  alone, (which was 12 lbs). The jig drag was subtracted from the actual drag test results of both the locked propellers and the freewheeling propellers, to arrive at a net difference in the test. 

I designed the jig bearings to have a similar resistance to the prop shaft on my own sail boat so from that perspective all is quite comparable in terms of freewheeling.

The propeller drag measurements were captured with a 50 Lb. analog scale (I had to ditch the digital scale shown in the photos as analog showed better on video) and GPS was used to measure SOG so as to more accurately compare between the same propeller in both fixed and freewheeling modes. The range of motion on the scale (movement of the hook) from 0-50 lbs. is about 1/8 inch so this did not affect any readings what so ever by changing the angle of the test jig in the water..

The propeller I used is a standard three blade fixed sailboat prop. It is made by Michigan Wheel. So this post focuses on the Michigan Wheel three blade prop which is perhaps the most common fixed prop used on sailboats in the US.

This is an age old argument, which can be resolved with a relatively easy test, yet surprisingly no one has done it, not even Practical Sailor.

The results of the Michigan Wheel MP propeller were…well surprising to say the least. I want to clarify some points below so there is less confusion.

1) This test was only to determine if a standard Michigan Wheel three blade fixed prop causes more or less drag when towed through the ocean at a similar depth to that of a sailboat, particularly my CS-36, and with a comparable shaft resistance to a sailboat (namely mine). It is not to give accurate numbers or data on how much drag the specific prop creates.

2) Drag is relative to the the drag jig I used. The drag jig alone, with no propeller attached, created about 12 lbs. of drag in this configuration at WOT (wide open throttle) on my 4 hp Johnson outboard.

3) Because the test jig is exactly the same in both fixed and freewheeling tests and the ONLYdifference between the fixed propeller and the freewheeling propeller test was a 2.5 inch roofing nail, I can definitively state that the only differences in the propeller drag tests comes from the propeller not being able to spin and spinning.

4) The motor was always run up to wide open throttle to totally minimize any throttle position variability between the propeller being locked or freewheeling.

5) The pin point accuracy of the scale means little because it is only a control. The same scale was used for both fixed and freewheeling and it was only compared to itself in an A/B situation, fixed/freewheel.

6) The difference between the fixed and freewheeling tests was LARGE, so a pound or two here or there means very, very little. The test jig measured the average drag at WOT (wide open throttle) in freewheeling mode, including the strut, at 20-25 pounds. The average drag in fixed (locked) mode, including the strut, was about 45-50 pounds. 

As you can see .001 differences in accuracy do not matter when trying to answer this question as related to this very, very popular sailboat prop.

For those worried about whirly gigs and vortexes and .0001 differences I then turned the test jig around, with the propeller facing forward, and ahead of the struts “interference wake”, and reran the test. I was surprised that I could not detect a discernible difference in load despite having to move the line a little higher on the strut. If there was a difference it was clearly less than one or two pounds and not noticeable in the big scheme of things.

7) Freewheeling is little bit of a misnomer. The shaft was not actually allowed to freewheel with minimal to no friction. The friction bearings I designed were tightened and adjusted to closely mimic the friction of my own sailboats shaft. This test was primarily for me and my own curiosity and then secondarily for the sailing community. This is why the depth of the prop in the water matches my CS-36T and the shaft friction was set to begin spinning at about .8 – 1.2 knots which is what it does on my own boat.

8) The results for the Michigan three blade prop are quite clear, and quite discernible, and coincide with those of the MIT study, the University of Strathclyde study and other prop drag tests like the one in a the UK’s Yachting Monthly magazine.

9) This experiment & video below is about the prop used, a Michigan Wheel three blade “MP” prop. I make NO claims or suggestions about any other fixed type props including a two blade version of the Michigan Wheel MP. If someone wants to send me a two blade MP in a 1″ shaft size I will be glad to test it too..

10) As far as I know this the ONLY video proof that clearly shows a fixed vs. freewheeling three blade sailboat prop being load tested and compared only to itself in both fixed and locked mode.

11) Before anyone gets all fired up because they are a believer that fixed three blade props cause less drag, not more, PLEASE remember that the ONLY difference between the fixed and freewheeling modes was a 2.5″ nail passing through both the jig and the 1″ shaft to lock it in place. There is NO possible way that 2.5″ nail caused a nearly 300% difference in drag or a 25 additional pounds of resistance.

12) I need a bigger motor! I was only able to attain a max speed of about 4.2 knots with the jig and prop in the water freewheeling and less in locked mode. I’d like to hit 6.5-7. Most sailors though are concerned about prop drag at less than hull speed and the 4 knot range is less than hull speed for most sailors. In light winds, and under hull speed, with a fixed three blade Michigan Wheel, you will see less drag when freewheeling!

Propeller Drag Test Results

Total Jig Drag = measured 12 pounds with no propeller mounted. Jig drag measurement was taken at WOT. (wide open throttle)

Locked Prop Drag =  45-50 pounds: When we subtract the measured jig drag, 50-12 = 38 pounds measured of actual propeller drag when locking the propeller in reverse under sail.

Freewheeling Prop Drag = 20-25 pounds: 25 – 12 = 13 pounds of actual propeller drag when freewheeling the propeller under sail.

The locked propeller drag is 2.92 times more drag or a 192% increase in drag over a freewheeling propeller when you remove the test jig from the equation!!!!

As I said earlier, the test results are not even close. There’s no need to worry about the .001’s or a few pounds of drag here or there or even the rather “unscientific” method I used in this test. If a sailor cares to find an additional knot of boat speed in light winds, he must free wheel his propeller under sail. (note: I picked an average wind day with flat water and tried my props both locked and free wheeling while under sail. I have two props on my catamaran, and Main Sail’s test was verified on my boat (it wasn’t even close) -end of test data-Rick)

Despite the Yamar advisory, which voids their warrantee if you lock their transmissions while sailing and despite Volvo’s recommendation that you sail while their transmission are in neutral and despite the MIT study, the University of Strathclyde Ocean Engineering white paper, the Yachting Monthly data and this webpage, which all show the same thing, that a locked propeller creates more drag when under sail, there are still a few Forum “expert” types arguing the helicopter blade theory. Which kinds of makes me wonder how many of these forum “experts” actually own a boat…..

I’ll repeat that I’ve never seen as much misinformation on a sailing subject as we get on propeller drag under sail.

Supporting Documentation

Now that you’ve read the warnings and understand that most sailboat owners should be free wheeling their propellers while sailing. What’s more …. ‘Main Sail’s’ test positively demonstates that your boat is faster with the transmission in neutral.

Since it was mentioned, I’m posting a link to both the original MIT paper on the same subject and The Sailboat propeller drag paper written by P.M. MacKenzie and M.A. Forrester below this paragraph. They are with the Department of Mechanical Engineering, University of Strathclyde, Glasgow , Scotland. The MIT report is an in depth study of 10 Propellers from many manufacturers and both fixed 2 and 3 blade as well as Maxi props. 

Actually, both papers are interesting reading and you would have thought these papers would have ended the controversy. In fact every study which was ever done on this subject has come to the same conclusion, a locked propeller creates more drag when under sail, yet that hasn’t even slowed down all the misinformation being dished out in sailing forums by ‘arm chair’ sailors. 

I’m hoping that our very own “Maine Sail’s” work can do what MIT and the University of Strathclyde could not. Educate sailors and dispel old wives tails and actually change the thinking in the sailing community to understanding that Free Wheeling a propeller instead of locking props under sail is better whenever it’s appropriate.

MIT Propeller Report

University of Strathclyde Propeller Report

One final note on this subject. We have to mention Prop Feathering. The helicopter blade theory cited by some arm chair sailors does have a basis in fact. If you are able to reduce the pitch of a propeller to zero and actually feather the prop, as you can on an aircraft, … you will achieve very low drag. For almost all of the sailing world this is irrelevant trivia as very few boat owners can justify the expense of adjustable pitch propellers (do people really spend $2500 on a single propeller???) I would call sailboat Prop Feathering with an adjustable pitch propeller a red herring. Although it’s the perfect solution to reducing prop drag, it simply doesn’t apply to more than 99% of sailboats affected.

This webpage has been mentioned as the best propeller drag comparison test on the internet and the only place all the propeller drag tests can be found in one place. I will humbly point out that apparently Michigan Wheel Marine (propeller manufacturer) feels this way as they have cited this webpage as the definitive resource on the subject (link to their page).

A huge “Thank You” to Maine Sail for the time and trouble he devoted to answering this question once and for all and for allowing his test to be published on, a resource for catamarans for sale by owner.


By Rick

Owner of a Catalac 8M and Catamaransite webmaster.

9 replies on “Propeller Drag Under Sail Test”

Eric Hiscock locked the prop with two blades as he described using Wanderer 4. He locked it vertically, hidden somewhat behind the keel. I wonder what the comparison would be under those conditions. I understand he locked the shaft, not the transmission. I would love to get remarks, please disclose my email

2.92 times more drag is actually 192% more, not 292%. Remember that a factor of 2 times increase is a 100% increase because the percentage is relative to the base number. This is, unfortunately, a common error in citing percentages greater than 100 or more.

The Yanmar and Volvo directives make me wonder what harm could come to those engines from leaving them in gear while sailing? They say to leave it neutral or get a shaft lock. Hmmm. Must have something to do with vibration backfeeding into the engine.

It is likely that the transmissions are not properly lubricated when driven from the output shaft while in neutral. Many transmissions are lubricated by the gears on the transmission input side, not the output side. This is why you see most vehicles (cars) being flat towed behind motorhomes are vehicles that have a transfer case. This is also why tow trucks tow vehicles with the drive axle no spinning.

If Yanmar and Volvo (and Lombardini marine for LDW 502 M, LDW 702 M, LDW 1003 M, LDW 1404 at advise or require running in neutral (unless you have folding or feathering prop, where reverse is advised), the problem greater than gearbox wear might be that the prop could be rotating the cold engine when not powered on, but didn’t see any explicit answer on that.
I have also seen reported: “Our Volvo manual albeit a 2040 says don’t put in gear and to run the engine every 10 hours of sailing. If that’s not an option fit a shaft brake. “, but didn’t see that manual yet.
That is a no-brainer if you allways overnight in a port or a marina and approach and exit on engine, but might be a problem if you a long ocean passage, and you could need a brake (or better folding prop).
I didn’t yet see what should be the exact reason for that reported Volvo piece of advice.
About drag: Beneteau Oceanis 41,1 went about 4.5 kts with gear locked in reverse and about 6.5 kts with the same sail and boat configuration and weather situation when I got awake and put gear to spin in neutral. The guy that put it in reverse has a folding prop on his own boat and didn’t see the difference he had caused during night shift of sailing.
Instruction leaflet for engine and gearbox for that Beneteau instructs neutral or reverse for folding, but no reason for that. I also couldn’t find that manual online yet to let you check there.

This was a great read and very helpful. Many thanks for all the effort that went into getting it this far. It has always seemed logical to me that a free wheeling prop would be less drag, confirmation is nice.

Leave a Reply

Your email address will not be published. Required fields are marked *